## Noncompact quantum knot invariants

### T. D. Dimofte<sup>a</sup>

<sup>a</sup>Caltech 452-48, 1200 E California Blvd, Pasadena, CA 91106

We describe one avenue to the explicit calculation of partition functions of knot complements in Chern-Simons theory with noncompact gauge group  $SL(2,\mathbb{C})$ , following [1]. Our techniques involve geometric quantization of the moduli space of flat connections on the torus, combined with quantization of the classical A-polynomial of a knot complement. We also compare these methods to known results for compact gauge group SU(2).

### 1. SETUP

We wish to consider Chern-Simons theory with complex, noncompact gauge group  $G_{\mathbb{C}} = SL(2,\mathbb{C})$ . Recall that  $G_{\mathbb{C}}$  is the complexification of the compact group G = SU(2). In particular, an  $SL(2,\mathbb{C})$  connection  $\mathcal{A}$  may be decomposed as

$$A = A^a T^a \,, \tag{1}$$

where  $T^a$  are antihermitian generators of su(2), but the coefficients  $\mathcal{A}^a$  are complex. Most generally, Chern-Simons theory with a complex gauge group on a 3-manifold M has the action [2]

$$S[\mathcal{A}] = \frac{t}{2} I_{CS}[\mathcal{A}] + \frac{\tilde{t}}{2} I_{CS}[\bar{\mathcal{A}}], \qquad (2)$$

where

$$I_{CS}[\mathcal{A}] = \int_{M} \text{Tr} \left( \mathcal{A} \wedge d\mathcal{A} + \frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A} \right), (3)$$

and the full partition function depends nontrivially on both t and  $\tilde{t}$ . However, if we define the partition function  $Z(M)^{(\rho)} = \int_{(\rho)} \mathcal{D} \mathcal{A} \, e^{iS}$  as a perturbative expansion in the background of a fixed classical solution  $\mathcal{A}^{(\rho)}$ , it will holomorphically factorize as

$$Z(M)^{(\rho)} = Z(M;t)^{(\rho)} Z(M;\tilde{t})^{(\rho)}.$$
 (4)

Our goal is to study the holomorphic piece  $Z(M;t)^{(\rho)}$  of this perturbative partition function when M is the complement of (a small neighborhood of) a knot K in the three-sphere:  $M = S^3 \setminus K$ . The choice  $\rho$  of classical solution is related

to the choice of boundary conditions on  $\Sigma$ . Since the action (3) is topological, one would hope that also in the quantum theory  $Z(M;t)^{(\rho)}$  calculates topological invariants of K; this is (mostly) true, as explained in [3,2].

Below, we use geometric quantization to derive the quantum Hilbert space associated to the toroidal boundary  $\Sigma$ , and then explain how to identify wavefunctions in this Hilbert space with the partition functions  $Z^{(\rho)}(M)$  for various 3-manifolds M.

# 2. MODULI SPACE OF FLAT CONNECTIONS

In order to find the Hilbert space  $\mathcal{H}$  associated to  $\Sigma$ , we consider Chern-Simons theory on a 3-manifold  $\Sigma \times \mathbb{R}$ , where  $\mathbb{R}$  can be thought of as a time coordinate [3]. It is easy to check that the classical solutions of Chern-Simons theory are given by flat connections, satisfying

$$\mathcal{F} = \mathcal{A} + \mathcal{A} \wedge \mathcal{A} = 0. \tag{5}$$

Flat connections are always uniquely determined by their holonomies around nontrivial 1-cycles, modulo gauge transformations. These holonomies form a representation of  $\pi_1$ . Since  $\mathbb{R}$  is contractible, the classical solutions of Chern-Simons theory on  $\Sigma \times \mathbb{R}$  are in 1-1 correspondence with flat connections on  $\Sigma$  itself. Therefore, the classical moduli space of the theory is

$$\mathcal{M}_{\mathbb{C}} = \{ \mathcal{A} \text{ on } \Sigma \text{ s.t. } \mathcal{F} = 0 \} / \text{gauge trans.}$$
  
=  $\text{Hom}(\pi_1(\Sigma), G_{\mathbb{C}}) / \text{conjugation.}$  (6)

T. D. Dimofte

This moduli space has been extensively studied for various gauge groups and Riemann surfaces  $\Sigma$ . It is a finite-dimensional hyperkähler manifold with many interesting properties (cf. [2,4]). For  $\Sigma = T^2$  and  $G_{\mathbb{C}} = SL(2,\mathbb{C})$ , it is easy to describe  $\mathcal{M}_{\mathbb{C}}$  explicitly. Since  $\pi_1(\Sigma) = \mathbb{Z}^2$  is commutative, the holonomies of  $\mathcal{A}$  can (almost always) be simultaneously diagonalized using gauge transformations. Letting  $e^{\pm u}$  and  $e^{\pm v}$  be the eigenvalues of  $\mathcal{A}$  on the two 1-cycles of  $\Sigma$ , we then have

$$\mathcal{M}_{\mathbb{C}} = \{(u, v)\} = (\mathbb{C}^* \times \mathbb{C}^*)/\mathbb{Z}_2, \qquad (7)$$

where  $\mathbb{Z}_2$  is the Weyl group symmetry (a remaining conjugation) that sends  $(u, v) \mapsto (-u, -v)$ .

The holomorphic Chern-Simons action induces a natural symplectic structure on the space  $\mathcal{M}_{\mathbb{C}}$ ,

$$\omega = \frac{t}{8\pi} \int_{\Sigma} \delta \mathcal{A} \wedge \delta \mathcal{A} = \frac{t}{2\pi} du \wedge dv.$$
 (8)

In order to quantize  $\mathcal{M}_{\mathbb{C}}$ , we simply promote the Poisson brackets of (8) to a commutation relation  $[u,v]=-2\pi i/t$ . Note how  $2\pi/t$  plays the role of Planck's constant  $\hbar$ . By comparison to ordinary quantum mechanics, the Hilbert space  $\mathcal{H}$  (by definition the quantization of  $\mathcal{M}_{\mathbb{C}}$ ) can be considered to consist of wavefunctions f(u) on which operators  $\hat{u}$  and  $\hat{v}$  act as u and  $(2\pi i/t)\partial_u$ , respectively.

## 3. COMPARISON TO SU(2)

The above arguments work almost the same way in the case of the compact gauge group G = SU(2). However, the relevant classical moduli space is  $\mathcal{M} = (S^1 \times S^1)/\mathbb{Z}_2$  because u and v must be valued in  $i\mathbb{R}/2\pi i\mathbb{Z}$ . Moreover, the level k = t/2 of the compact Chern-Simons theory must be an integer. Since a compact "momentum"  $\hat{v}$  quantizes the compact "position"  $\hat{u}$  (and vice versa), the Hilbert space consists of functions f(u) such that  $u \in i\pi\mathbb{Z}/k$  and  $f(u+2\pi i) = f(u)$ . Combined also with the  $\mathbb{Z}_2$  Weyl symmetry imposing f(-u) = f(u), we see that  $\mathcal{H}$  is (k+1)-dimensional, consisting of values of f at u = 0,  $i\pi/k$ ,  $2\pi i/k$ , ...,  $i\pi$ .

This is completely consistent with the description of  $\mathcal{H}$  as the space of conformal blocks of the SU(2) WZW model at level k on the torus [3],

since there are k+1 level-k representations of  $\widehat{su}(2)$ . A complete basis for  $\mathcal{H}$  can also be obtained by computing the Chern-Simons partition function on a *solid* torus with a Wilson loop "colored" by the first k+1 representations of SU(2) running through its center. An n-dimensional representation on the loop induces a holonomy  $\exp(\pm i\pi(n-1)/k)$  around it.

## 4. A-POLYNOMIAL

To finish, let us come back to  $G_{\mathbb{C}} = SL(2,\mathbb{C})$  and explain which function  $f(u) \in \mathcal{H}$  corresponds to  $Z(M;t)^{(\rho)}$  for a particular knot complement M. Classically, the flat connections on  $\partial M = \Sigma$  which extend to flat connections on M are characterized as solutions to a polynomial

$$A_M(e^u, e^v) = 0 (9)$$

in the two holonomies around  $\Sigma = T^2$ . Typically, one chooses  $e^v$  to correspond to the cycle of  $\Sigma$  that is trivial in  $H_1(M)$ , and  $e^u$  to the complementary cycle (i.e. the one linking the knot). The function  $A_M(e^u, e^v)$  is called the A-polynomial of K. Every classical solution  $\rho$  corresponds to a point on the curve (9). Since  $A_M$  is a polynomial, there are a finite number of classical solutions, indexed by  $\rho_i(u)$ , that correspond to a particular boundary condition u. In quantum Chern-Simons theory, the perturbative partition function must obey

$$\hat{A}_M(e^{\hat{u}}, e^{\hat{v}}) \cdot Z(M; t)^{(\rho_i(u))} = 0 \tag{10}$$

for an appropriate quantized version  $\hat{A}_M$  of  $A_M$  [1,5]. This differential equation can then be solved to find the  $Z(M;t)^{(\rho_i(u))}$ 's as functions of u and t.

This completes our short description of  $SL(2,\mathbb{C})$  knot invariants. Many more details and alternative derivations of  $Z(M;t)^{(\rho)}$  appear in [1].

### REFERENCES

- T.D. Dimofte, S. Gukov, J. Lenells, and D. Zagier, to appear.
- 2. E. Witten, Comm. Math. Phys. 137 (1991) 29.
- 3. E. Witten, Comm. Math. Phys. 121 (1989) 351.
- A. Kapustin and E. Witten, arXiv:hepth/0604151.
- 5. S. Gukov, Comm. Math. Phys. 255 (2005) 577.