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We describe one avenue to the explicit calculation of partition functions of knot complements in Chern-Simons
theory with noncompact gauge group SL(2, C), following [1]. Our techniques involve geometric quantization of
the moduli space of flat connections on the torus, combined with quantization of the classical A-polynomial of a
knot complement. We also compare these methods to known results for compact gauge group SU(2).

1. SETUP

We wish to consider Chern-Simons theory
with complex, noncompact gauge group GC =
SL(2, C). Recall that GC is the complexification
of the compact group G = SU(2). In particular,
an SL(2, C) connection A may be decomposed as

A = AaT a , (1)

where T a are antihermitian generators of su(2),
but the coefficients Aa are complex. Most gener-
ally, Chern-Simons theory with a complex gauge
group on a 3-manifold M has the action [2]

S[A] =
t

2
ICS [A] +

t̃

2
ICS [Ā] , (2)

where

ICS [A] =
∫

M

Tr
(
A∧ dA+

2
3
A∧A∧A

)
, (3)

and the full partition function depends nontriv-
ially on both t and t̃. However, if we define
the partition function Z(M)(ρ) =

∫
(ρ)
DA eiS as

a perturbative expansion in the background of a
fixed classical solution A(ρ), it will holomorphi-
cally factorize as

Z(M)(ρ) = Z(M ; t)(ρ)Z(M ; t̃ )(ρ). (4)

Our goal is to study the holomorphic piece
Z(M ; t)(ρ) of this perturbative partition function
when M is the complement of (a small neigh-
borhood of) a knot K in the three-sphere: M =
S3\K. The choice ρ of classical solution is related

to the choice of boundary conditions on Σ. Since
the action (3) is topological, one would hope that
also in the quantum theory Z(M ; t)(ρ) calculates
topological invariants of K; this is (mostly) true,
as explained in [3,2].

Below, we use geometric quantization to de-
rive the quantum Hilbert space associated to the
toroidal boundary Σ, and then explain how to
identify wavefunctions in this Hilbert space with
the partition functions Z(ρ)(M) for various 3-
manifolds M .

2. MODULI SPACE OF FLAT CONNEC-
TIONS

In order to find the Hilbert space H associated
to Σ, we consider Chern-Simons theory on a 3-
manifold Σ × R, where R can be thought of as
a time coordinate [3]. It is easy to check that
the classical solutions of Chern-Simons theory are
given by flat connections, satisfying

F = A+A ∧A = 0 . (5)

Flat connections are always uniquely deter-
mined by their holonomies around nontrivial 1-
cycles, modulo gauge transformations. These
holonomies form a representation of π1. Since
R is contractible, the classical solutions of Chern-
Simons theory on Σ×R are in 1-1 correspondence
with flat connections on Σ itself. Therefore, the
classical moduli space of the theory is

MC = {A on Σ s.t.F = 0}/gauge trans.
= Hom(π1(Σ), GC)/conjugation. (6)
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This moduli space has been extensively studied
for various gauge groups and Riemann surfaces
Σ. It is a finite-dimensional hyperkähler manifold
with many interesting properties (cf. [2,4]). For
Σ = T 2 and GC = SL(2, C), it is easy to describe
MC explicitly. Since π1(Σ) = Z2 is commuta-
tive, the holonomies of A can (almost always) be
simultaneously diagonalized using gauge transfor-
mations. Letting e±u and e±v be the eigenvalues
of A on the two 1-cycles of Σ, we then have

MC = {(u, v)} = (C∗ × C∗)/Z2 , (7)

where Z2 is the Weyl group symmetry (a remain-
ing conjugation) that sends (u, v) 7→ (−u,−v).

The holomorphic Chern-Simons action induces
a natural symplectic structure on the space MC,

ω =
t

8π

∫
Σ

δA ∧ δA =
t

2π
du ∧ dv . (8)

In order to quantize MC, we simply promote the
Poisson brackets of (8) to a commutation relation
[u, v] = −2πi/t. Note how 2π/t plays the role of
Planck’s constant ~. By comparison to ordinary
quantum mechanics, the Hilbert spaceH (by defi-
nition the quantization of MC) can be considered
to consist of wavefunctions f(u) on which opera-
tors û and v̂ act as u· and (2πi/t)∂u, respectively.

3. COMPARISON TO SU(2)

The above arguments work almost the same
way in the case of the compact gauge group
G = SU(2). However, the relevant classical mod-
uli space is M = (S1 × S1)/Z2 because u and v
must be valued in iR/2πiZ. Moreover, the level
k = t/2 of the compact Chern-Simons theory
must be an integer. Since a compact “momen-
tum” v̂ quantizes the compact “position” û (and
vice versa), the Hilbert space consists of func-
tions f(u) such that u ∈ iπZ/k and f(u + 2πi) =
f(u). Combined also with the Z2 Weyl symme-
try imposing f(−u) = f(u), we see that H is
(k+1)-dimensional, consisting of values of f at
u = 0, iπ/k, 2πi/k, ..., iπ.

This is completely consistent with the descrip-
tion of H as the space of conformal blocks of the
SU(2) WZW model at level k on the torus [3],

since there are k + 1 level-k representations of
ŝu(2). A complete basis for H can also be ob-
tained by computing the Chern-Simons partition
function on a solid torus with a Wilson loop “col-
ored” by the first k + 1 representations of SU(2)
running through its center. An n-dimensional
representation on the loop induces a holonomy
exp(±iπ(n− 1)/k) around it.

4. A-POLYNOMIAL

To finish, let us come back to GC = SL(2, C)
and explain which function f(u) ∈ H corre-
sponds to Z(M ; t)(ρ) for a particular knot com-
plement M . Classically, the flat connections on
∂M = Σ which extend to flat connections on M
are characterized as solutions to a polynomial

AM (eu, ev) = 0 (9)

in the two holonomies around Σ = T 2. Typically,
one chooses ev to correspond to the cycle of Σ that
is trivial in H1(M), and eu to the complementary
cycle (i.e. the one linking the knot). The function
AM (eu, ev) is called the A-polynomial of K. Ev-
ery classical solution ρ corresponds to a point on
the curve (9). Since AM is a polynomial, there are
a finite number of classical solutions, indexed by
ρi(u), that correspond to a particular boundary
condition u. In quantum Chern-Simons theory,
the perturbative partition function must obey

ÂM (eû, ev̂) · Z(M ; t)(ρi(u)) = 0 (10)

for an appropriate quantized version ÂM of AM

[1,5]. This differential equation can then be solved
to find the Z(M ; t)(ρi(u))’s as functions of u and t.

This completes our short description of
SL(2, C) knot invariants. Many more details and
alternative derivations of Z(M ; t)(ρ) appear in [1].
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